提问
盖德化工网  >  盖德问答  >  关于头孢曲松钠的废水...

关于头孢曲松钠的废水处理有哪些研究? 1

0评论 +关注
共1个回答

关于头孢曲松钠废水的处理是当前环境保护和药物生产领域的研究热点之一,针对这一问题的研究涉及多种技术和方法。寻找高效、环保的头孢曲松钠废水处理方案,对减少环境污染和资源浪费具有重要意义。


背景:头孢曲松钠(Ceftriaxone  sodium)为β-内酰胺类抗生素、头孢菌素类 药,用于敏感菌所致的肺炎、支气管炎、腹膜炎、胸膜炎,以及皮肤和软组织、尿路、胆道、骨及关节、五官、创面等部位的感染,还可用于败血症和脑膜炎。

目前,我国抗生素生产企业约为世界总生产企业的30%左右。头孢曲松钠废水属于高浓度的有机废水,具有有毒有害、难降解、成分复杂等特点。直接排放进入水体后对环境危害较大,且不利于水体进行自然修复,也可能引起某些危害生态系统的细菌或者病毒产生耐药性而不易被杀害,使得水体中生物的生存受到严重威胁或成为某些疾病的源头,也有可能残留在生物体内被人类食用进而转移至人体中,对人体的生命健康造成严重威胁。


头孢曲松钠废水的处理研究:

1. α-MnO2活化过硫酸盐

孙威等人针对头孢类抗生素类废水,通过过硫酸盐高级氧化技术进行降解。实验结果表明头孢曲松钠废水在反应温度为60℃,pH为6,过硫酸盐浓度为250 mmol/L的条件下,效果最好,头孢曲松钠废水去除率可达95.1%。并通过水热法制备二氧化锰活化过硫酸盐,相比于不投加二氧化锰,去除率由70.2%上升到89.7%。表明二氧化锰可明显提高头孢曲松钠废水去除率。


2. g-C3N4光催化材料

赵艳艳等人采用高温煅烧法成功制备了块状g-C3N4和g-C3N4纳米材料,利用XRD、SEM、FT-IR、UV-Vis、PL等方法对材料进行表征,并研究其降解头孢曲松钠的光催化活性和机理。当降解时间为120 min、头孢曲松钠质量浓度为10 mg/mL、半导体材料的加入量为0.1 g时,块状g-C3N4和g-C3N4纳米材料的降解率分别为67.74%和85.84%,g-C3N4纳米材料的光催化活性高于块状g-C3N4;对催化机制研究发现,空穴(h+)和羟基自由基(·OH)起主要催化作用,超氧自由基(·O2-)次之。对g-C3N4纳米材料的稳定性进行评价,3次循环催化后材料稳定性良好。


3. MOFs多孔碳

张慧迪等人MOFs材料为基础,制备了钴MOFs多孔碳(Co-MOFs-PC)和钴镍MOFs多孔碳(Co/Ni-MOFs-PC)材料,并将其应用于水中头孢曲松钠及其模拟废水的降解,为抗生素类废水的电化学降解提供了有效的方法。文章Co(NO3)2·6H2O和1,3,5-苯三甲酸为原料通过水热、碳化的方法制备了Co-MOFs-PC复合材料。未碳化的Co-MOFs呈规则层状结构,碳化后Co-MOFs-PC呈三维孔道结构,有利于电解质及反应物的快速传输。Co-MOFs-PC具有良好的氧化还原能力以及较低的阻抗特性。将其应用于电催化降解水中头孢曲松钠(10mg·L-1),反应120 min后,头孢曲松钠的降解率为82.91%。经过20次循环利用后,Co-MOFs-PC电极表现出良好的稳定性。在Co-MOFs的基础上,引入Ni(NO3)2·6H2O作为Ni源,制备了Co/Ni-MOFs-PC复合材料。制备的Co/Ni-MOFs-PC呈二级结构,在中空微球的表面生长了许多纳米棒和纳米球,Ni与Co形成了尖晶石结构的Co2Ni O4,碳化后的材料具有丰富的孔道结构,大量的微孔(44.3%)使材料具有较大的比表面积(1135 m2·g-1),平均孔径2.80 nm,且表面含有丰富的含氧官能团,Co/Ni-MOFs-PC电极对头孢曲松钠具有非常好的电催化活性,反应120 min后,降解率为96.41%。经过20次循环利用后,该电极片仍保留初始催化活性的82.20%,说明该电极片有较好的稳定性。在对酶法生产头孢抗生素模拟废水的电催化降解实验中,Co/Ni-MOFs-PC表现出非常好的降解效果,反应480 min后,COD去除率为97.78%,电极能耗WCOD为1.74 k Wh·g-1。


4. Cu2O/TiO2复合材料

孟冠华等人通过浸渍-化学还原法制备Cu2O/TiO2复合材料并将其作为可见光催化臭氧氧化头孢曲松钠(CRO)的催化剂。Cu2O对TiO2的掺杂改性使材料孔容和平均孔径增大,能带宽度减小,可见光下的催化性能增强。在Cu2O:TiO2摩尔比为0.2:1、可见光照射120 min、溶液pH值为6.12、头孢曲松钠浓度为10 mg/L、Cu2O/TiO2投加量为0.2 g/L、臭氧浓度为1.5 mg/L条件下,头孢曲松钠和TOC的降解率分别达到81.05%和52.16%,臭氧利用率达到50.84%。自由基捕获实验表明,可见光催化臭氧氧化头孢曲松钠的过程中光生空穴(h+)和超氧自由基(·O2-)起主要作用。5次循环使用实验结果表明,Cu2O/TiO2有较好的可重复利用性。本研究结果表明,对于水体中的头孢曲松钠,可见光催化臭氧氧化是一种很有前途的治理技术。


参考文献:

[1]何雄,刘再德,周慧等. 头孢曲松钠原料粒径分布测定方法研究 [J]. 流程工业, 2023, (04): 58-60.

[2]孟冠华,张林森,刘宝河等. 可见光下Cu_2O/TiO_2催化臭氧氧化头孢曲松钠性能研究 [J]. 过程工程学报, 2023, 23 (02): 311-322.

[3]张慧迪. 基于MOFs多孔碳的制备及其用于电催化降解水中头孢曲松钠[D]. 黑龙江大学, 2021. DOI:10.27123/d.cnki.ghlju.2021.001501.

[4]孙威,张斌,刘恩棒等. α-MnO_2活化过硫酸盐对头孢曲松钠废水的处理研究 [J]. 辽宁化工, 2019, 48 (09): 861-863+867. DOI:10.14029/j.cnki.issn1004-0935.2019.09.008.

[5]赵艳艳,梁旭华,邓寒霜等. g-C_3N_4光催化材料的制备及降解水中头孢曲松钠 [J]. 现代化工, 2018, 38 (06): 128-132. DOI:10.16606/j.cnki.issn0253-4320.2018.06.029.

国内供应商(136家)
头孢曲松钠相关回答
您可能感兴趣的问答
 
请填写举报原因
选择举报原因
 
增加悬赏
剩余能量值
能量值