个人主页
深渊晓旋 +关注 私信
  • 0被赞
  • 0收藏
  • 0关注
研究如何合成肉桂酰氯是为了探索新型材料合成方法和其在化工、医药等领域的应用。 简述: 肉桂酰氯 是一种重要的化工原料,在有机合成、药物合成及新材料等方面有着重要的应用。目前肉桂酰氯的合成方法主要方法有 :(1)由肉桂酸钠与乙二酰氯反应而得肉桂酰氯。(2)肉桂酸与氯化亚砜反应制取肉桂酰氯。 1. 合成: 1.1 方法一 将肉桂酸制成肉桂酰氯。具体步骤如下: 在安有回流冷凝器(冷凝器上口安装氯化钙干燥管, 并与一吸收氯化氢和二氧化硫的气体吸收装置相连)的 500mL圆底烧瓶中加入肉桂酸 36g (240mmol)和新蒸的亚硫酰氯31.5g (260mmol),加热至缓慢回流时有大量气体逸出, 反应约 0.5h后有明显的气体放出。减压蒸除未反应的亚硫酰氯得肉桂酰氯38.2g。 1.2 方法二 用四氯化硅作为酰氯化试剂,与肉桂酸在 60~70℃下反应2~4小时,得到肉桂酰氯粗品。该方法有效转化了多晶硅生产和有机硅生产中大量副产的四氯化硅,生产具有高附加值的肉桂酰氯;在转化处理了多晶硅生产发展带来的难于治理的副产四氯化硅的同时,显著降低了制备肉桂酰氯的成本。具体如下: ( 1)反应式: ( 2)实验操作 在有回流和搅拌装置的耐酸反应釜中加入一定量的肉桂酸,按摩尔比 1:1.1加入四氯化硅,在60℃下反应4小时。同时回收处理过量的四氯化硅和产生的氯化氢。 在 60~80℃下蒸馏,先蒸出过量的四氯化硅。再减压蒸馏收集131℃(1.47kPa)馏分,即得产品肉桂酰氯。或者冷却后用苯萃取,用四氯化碳重结晶得到肉桂酰氯产品。 2. 应用举例:合成肉桂酸苄酯 具体步骤为:在装有搅拌器和温度计的 500mL三口烧瓶中加入苄醇29.8g(276mmol),三乙胺32.3 mL (230mmol)和四氢呋喃25mL,搅拌下将含肉桂酰氯38.2 (230mmol)的35mL四氢呋喃混合液滴加到反应瓶中,此时有烟雾产生,且温度上升,用冷水浴将反应体系的温度控制在15℃ ~20℃,滴毕,继续搅拌1.5h。反应液用水(3 ×30mL)洗涤,无水硫酸钠干燥。减压蒸馏,先收集(220~ 245)℃/2.9kPa的馏分,再收集(228 ~230)℃/ 2.9kPa的馏分得纯的肉桂酸苄酯52g。 参考文献: [1] 四川理工学院. 一种用四氯化硅制备肉桂酰氯的方法. 2016-07-20. [2] 李德江,龙德清,付和清. 肉桂酸苄酯的合成[J]. 合成化学,2004,12(4):378-380. DOI:10.3969/j.issn.1005-1511.2004.04.019. ...
关于头孢曲松钠废水的处理是当前环境保护和药物生产领域的研究热点之一,针对这一问题的研究涉及多种技术和方法。寻找高效、环保的头孢曲松钠废水处理方案,对减少环境污染和资源浪费具有重要意义。 背景:头孢曲松钠( Ceftriaxone sodium)为β-内酰胺类抗生素、头孢菌素类 药,用于敏感菌所致的肺炎、支气管炎、腹膜炎、胸膜炎,以及皮肤和软组织、尿路、胆道、骨及关节、五官、创面等部位的感染,还可用于败血症和脑膜炎。 目前,我国抗生素生产企业约为世界总生产企业的 30%左右。头孢曲松钠废水属于高浓度的有机废水,具有有毒有害、难降解、成分复杂等特点。直接排放进入水体后对环境危害较大,且不利于水体进行自然修复,也可能引起某些危害生态系统的细菌或者病毒产生耐药性而不易被杀害,使得水体中生物的生存受到严重威胁或成为某些疾病的源头,也有可能残留在生物体内被人类食用进而转移至人体中,对人体的生命健康造成严重威胁。 头孢曲松钠废水的处理研究: 1. α-MnO2活化过硫酸盐 孙威等人针对头孢类抗生素类废水, 通过过硫酸盐高级氧化技术进行降解。实验结果表明头孢曲松钠废水在反应温度为 60℃,pH为6, 过硫酸盐浓度为 250 mmol/L的条件下,效果最好, 头孢曲松钠废水去除率可达 95.1%。并通过水热法制备二氧化锰活化过硫酸盐,相比于不投加二氧化锰, 去除率由 70.2%上升到89.7%。表明二氧化锰可明显提高头孢曲松钠废水去除率。 2. g-C3N4光催化材料 赵艳艳等人 采用高温煅烧法成功制备了块状 g-C3N4和g-C3N4纳米材料, 利用 XRD、SEM、FT-IR、UV-Vis、PL等方法对材料进行表征, 并研究其降解头孢曲松钠的光催化活性和机理。当降解时间为 120 min、头孢曲松钠质量浓度为10 mg/mL、半导体材料的加入量为0.1 g时, 块状 g-C3N4和g-C3N4纳米材料的降解率分别为67.74%和85.84%,g-C3N4纳米材料的光催化活性高于块状g-C3N4;对催化机制研究发现, 空穴 (h+)和羟基自由基(·OH)起主要催化作用, 超氧自由基 (·O2-)次之。对g-C3N4纳米材料的稳定性进行评价,3次循环催化后材料稳定性良好。 3. MOFs多孔碳 张慧迪等人 以 MOFs材料为基础, 制备了钴 MOFs多孔碳(Co-MOFs-PC)和钴镍MOFs多孔碳(Co/Ni-MOFs-PC)材料,并将其应用于水中头孢曲松钠及其模拟废水的降解,为抗生素类废水的电化学降解提供了有效的方法。文章 以 Co(NO3)2·6H2O和1,3,5-苯三甲酸为原料通过水热、碳化的方法制备了Co-MOFs-PC复合材料。未碳化的Co-MOFs呈规则层状结构, 碳化后 Co-MOFs-PC呈三维孔道结构, 有利于电解质及反应物的快速传输。 Co-MOFs-PC具有良好的氧化还原能力以及较低的阻抗特性。将其应用于电催化降解水中头孢曲松钠(10mg·L-1), 反应 120 min后, 头孢曲松钠的降解率为 82.91%。经过20次循环利用后,Co-MOFs-PC电极表现出良好的稳定性。在Co-MOFs的基础上, 引入 Ni(NO3)2·6H2O作为Ni源, 制备了 Co/Ni-MOFs-PC复合材料。制备的Co/Ni-MOFs-PC呈二级结构,在中空微球的表面生长了许多纳米棒和纳米球,Ni与Co形成了尖晶石结构的Co2Ni O4,碳化后的材料具有丰富的孔道结构, 大量的微孔 (44.3%)使材料具有较大的比表面积(1135 m2·g-1), 平均孔径 2.80 nm,且表面含有丰富的含氧官能团,Co/Ni-MOFs-PC电极对头孢曲松钠具有非常好的电催化活性, 反应 120 min后, 降解率为 96.41%。经过20次循环利用后, 该电极片仍保留初始催化活性的 82.20%,说明该电极片有较好的稳定性。在对酶法生产头孢抗生素模拟废水的电催化降解实验中,Co/Ni-MOFs-PC表现出非常好的降解效果, 反应 480 min后,COD去除率为97.78%, 电极能耗 WCOD为1.74 k Wh·g-1。 4. Cu2O/TiO2复合材料 孟冠华等人 通过浸渍 -化学还原法制备Cu2O/TiO2复合材料 并将其作为可见光催化臭氧氧化头孢曲松钠 (CRO)的催化剂。Cu2O对TiO2的掺杂改性使材料孔容和平均孔径增大,能带宽度减小,可见光下的催化性能增强。在Cu2O:TiO2摩尔比为0.2:1、可见光照射120 min、溶液pH值为6.12、头孢曲松钠浓度为10 mg/L、Cu2O/TiO2投加量为0.2 g/L、臭氧浓度为1.5 mg/L条件下,头孢曲松钠和TOC的降解率分别达到81.05%和52.16%,臭氧利用率达到50.84%。自由基捕获实验表明,可见光催化臭氧氧化头孢曲松钠的过程中光生空穴(h+)和超氧自由基(·O2-)起主要作用。5次循环使用实验结果表明,Cu2O/TiO2有较好的可重复利用性。本研究结果表明,对于水体中的头孢曲松钠,可见光催化臭氧氧化是一种很有前途的治理技术。 参考文献: [1]何雄,刘再德,周慧等. 头孢曲松钠原料粒径分布测定方法研究 [J]. 流程工业, 2023, (04): 58-60. [2]孟冠华,张林森,刘宝河等. 可见光下Cu_2O/TiO_2催化臭氧氧化头孢曲松钠性能研究 [J]. 过程工程学报, 2023, 23 (02): 311-322. [3]张慧迪. 基于MOFs多孔碳的制备及其用于电催化降解水中头孢曲松钠[D]. 黑龙江大学, 2021. DOI:10.27123/d.cnki.ghlju.2021.001501. [4]孙威,张斌,刘恩棒等. α-MnO_2活化过硫酸盐对头孢曲松钠废水的处理研究 [J]. 辽宁化工, 2019, 48 (09): 861-863+867. DOI:10.14029/j.cnki.issn1004-0935.2019.09.008. [5]赵艳艳,梁旭华,邓寒霜等. g-C_3N_4光催化材料的制备及降解水中头孢曲松钠 [J]. 现代化工, 2018, 38 (06): 128-132. DOI:10.16606/j.cnki.issn0253-4320.2018.06.029. ...
Boc-甘氨酸是多种医药和生物科技的重要中间原料和中间体,合成Boc-甘氨酸的方法具有一定的研究意义。 背景: Boc-甘氨酸主要应用于多肽合成,主要应用于多种药物以及生物技术的应用,其结构式如下图。 甘氨酸 (G1ycine)又名氨基乙酸,为人体非必需氨基酸。甘氨酸是氨基酸系列中结构最为简单,人体非必需的一种氨基酸,在分子中同时具有酸性和碱性官能团,在水中可电离,具有很强的亲水性,属于极性氨基酸,溶于极性溶剂,而难溶于非极性溶剂,而且具有较高的沸点和熔点。甘氨酸具有广泛的用途和作用,而现有技术中,将Boc作为保护基对甘氨酸进行保护是多种医药和生物科技的重要中间原料,而现有制备 Boc-甘氨酸的方法大多存在一定的缺陷和一定的局限性,使得生产不够环保安全,收率较低,并且容易生产杂质,后续提纯工序费时费力,使得生产成本增加。 制备: 根据 现有 Boc-甘氨酸合成方法的局限性,郑果 等人 提供一种制备 Boc-甘氨酸的方法, 具体为: 将 L-甘氨酸与二氧六环、碳酸氢钠溶液混合条件下,分批加入(Boc)2O,通过控制反应条件,高产率获得Boc-甘氨酸。 该方法 成本低廉,方法简便,操作安全,污染小,产率高,容易实现工业化生产。为工业化生产 Boc-甘氨酸提供了一种新的方法。 具体实验步骤如下: ( 1) 将 18.1gL-甘氨酸,100ml水加于反应瓶中,搅拌。加入16g氢氧化钠配置的0.01mol/L碱液调至碱性。再加入8g的(Boc)2O反应2小时,再加入8g的(Boc)2O反应2小时,最后加入9g的(Boc)2O反应4小时。 ( 2) 用正己烷 12ml/次,萃取杂质三次。3mol/L盐酸调节PH=3后,再用二氧六环0.6L/次,萃取产品三次。合并酯层,用盐水洗到中性。加入15克无水硫酸钠干燥10小时。 ( 3) 过滤,滤液减压浓缩干,加入 60ml正己烷搅拌结晶。离心出产品,烘干。得到产品25.0g。产率93.87%。 参考文献: [1]崇州合瑞科技有限公司. 一种制备Boc-甘氨酸的方法. 2015-01-14. ...
丁酸己酯是一种无色透明液体,可与常见的有机溶剂混溶。它是一种有机酯类化合物,存在于多种植物中,具有独特的香味,广泛应用于食品、饮料工业中。 图1 丁酸己酯的性状图 丁酸己酯的性质 丁酸己酯可通过酯化反应制备得到。它的化学性质主要表现在其酯基单元上,可与其他有机化合物发生酯交换和胺酯交换反应。 丁酸己酯的应用 丁酸己酯是一种允许使用的食用香料,常用于配制多种水果香精。它也是许多植物中的主要成分,具有天然来源的特点。此外,丁酸己酯还可作为有机合成试剂和驱避剂使用。 有研究表明,丁酸己酯可用于防治绿盲蝽若虫,通过喷撒丁酸己酯缓释微囊可驱避绿盲蝽危害,减少化学农药使用量,降低农药残留且不产生抗药性。 参考文献 [1] 张富捐,张翔宇,盛淑玲.食用香料丁酸己酯合成研究[J].浙江化工, 2004, 35(6):2. [2] 路常宽,王晓勤.丁酸己酯作为驱避剂在防治绿盲蝽若虫中的应用:CN202110041942.4[P]. ...
氢化奎尼定,又称双氢奎尼丁,是一种白色结晶固体,不溶于水,具有一定的碱性。它是奎尼定的氢化衍生物,具有一定的生物活性,可用作有机合成中间体和医药化学合成试剂,特别适用于抗心律失常药的合成。 氢化奎尼定的理化性质 氢化奎尼定是一种金鸡纳碱衍生物,可视为一种天然的手性小分子催化剂,广泛应用于有机小分子催化等有机基础研究领域。它含有一对孤对电子,可与苄溴类化合物发生亲核取代反应,生成相应的季铵盐衍生物。这种季铵盐是一种相转移催化剂,广泛应用于两相之间的不对称催化转化反应。 氢化奎尼定的合成方法 图1 氢化奎尼定的合成路线 将奎尼定、甲醇和钯碳加入干燥的反应釜中,通过氢气置换空气,保持反应压力并在适当温度下反应一定时间。反应完全后,冷却、过滤和减压浓缩得到氢化奎尼定产物。 氢化奎尼定的应用 氢化奎尼定常被用作有机小分子催化剂,可促使不对称手性合成反应,生成手性有机化合物。这对于制备具有特定空间结构的分子非常重要,因为手性分子在医药、材料科学和生命科学等领域具有重要应用。此外,氢化奎尼定还可用于合成金鸡纳碱衍生的手性配体,这些配体在不对称合成中具有广泛的应用,可以用于制备手性有机分子。 参考文献 [1] Medina, Sandra; Organic Letters, 2016, 18, 4222–4225. ...
乙酰脲是一种常用的化学物质,在制药领域有着广泛的应用。它具有多个特点和优势,可以用于多个制药工艺。 乙酰脲在制药中的一个应用领域是作为活性药物成分的合成中间体。它可以作为合成多种药物的前体,通过化学反应转化为目标药物。乙酰脲的化学结构灵活,可以进行多样的官能团修饰,从而实现对药物性质的调控。乙酰脲合成的药物通常具有较好的稳定性和生物活性,对于制药工艺的优化和药物性能的改进起到了重要作用。 另一个应用领域是乙酰脲作为溶剂的使用。乙酰脲具有良好的溶解性能,可以溶解许多药物和化合物。这使得乙酰脲成为一种常见的溶剂选择,用于制药工艺中的溶解、反应和提取等步骤。乙酰脲的溶解能力和化学稳定性使得它在制药中具有广泛的应用,特别是在无水或有机溶剂中溶解性较差的物质。 此外,乙酰脲还可以用作药物的稳定剂和保护剂。一些药物在制备、贮存和使用过程中容易发生分解或氧化,导致药效降低或失效。乙酰脲可以作为一种稳定剂或保护剂,通过与药物发生反应,形成稳定的化合物,延缓或阻止药物的分解和氧化反应,从而提高药物的稳定性和保存期限。 乙酰脲的特点之一是其较好的生物相容性。这使得乙酰脲在制药中的应用更加可靠和安全。对人体的刺激性较小,这使得它成为一种理想的药物成分和制药辅料的选择。 综上所述,乙酰脲在制药中具有广泛的应用领域和特点。它可以作为药物合成中间体,用于合成活性药物成分。同时,乙酰脲作为溶剂具有良好的溶解性能,被广泛应用于制药工艺中的溶解、反应和提取步骤。此外,乙酰脲还可作为药物的稳定剂和保护剂,提高药物的稳定性和保存期限。乙酰脲具有较低的毒性和良好的生物相容性,使得它在制药中的应用更加可靠和安全。...
离子半径是指在固态物质中相邻两个离子中心之间的距离,它可以通过测定来确定。然而,为了得到一套有用的经验半径值,需要进行一些规定和假设。鲍林对这个问题进行了研究,并得出了一些结论。 以四种盐NaF、KCl、RbBr和CsI为例,这些盐中的阳离子和阴离子具有相似的半径比。根据两个假设: (1) 阳离子和阴离子是接触的,核间距等于半径之和。 (2) 对于给定的惰性气体电子构型,半径和外层电子所感受到的有效核电荷成反比。 可以应用这些规则来估计离子的半径。 离子晶体结构是离子型物质中最重要的结构之一。在离子型结构中,每个离子被一定数量符号相反的离子所包围,这个数量称为离子的配位数。不同的化合物具有不同的晶体结构,这取决于离子的相对大小。 最稳定的排列方式应该是允许电荷相反的离子尽可能多地相接触,而电荷相同的离子又不挤在一起。因此,离子的相对大小决定了最适宜的晶体结构。 ...
除了激子转移机理外,还存在其他能量传递理论。当给体与受体的相互作用大于分子内电子运动和核运动之间的相互作用时,称之为强相互作用或强耦合。 在这种情况下,给体和受体中的振动子跃迁实际上是相互共振的,因此激发能转移速率比核振动快,且激发能转移时核平衡位置没有实质性变化。 这种激发是离散的,也就是在整个体系上分布,可以用电子激发态定态来描述体系,被定义为激子态。这种由强相互作用引起的激发能转移也被称为激子转移。 各种能量转移机理的适用范围: 在实际问题研究中,通常会遇到多种机理同时存在于同一体系中。影响转移机理最重要且最直观的因素之一是给体和受体之间的距离。 一般来说,长距离转移属于库仑机理,接下来是通过键的超交换机理、电子交换机理和激子机理,按照距离从长到短的顺序进行能量转移。 但是,这种距离界限并不是非常明确,因此确定一个体系中能量转移的机理并不是一件简单的事情。仅凭单一因素来确定机理的做法往往是不可靠的。 ...
生物芯片可以用于细胞的检测和微生物菌群结构的高效分析。该技术是公认的,迄今为止最简便、快速、准确的分子生物学方法。 目前,已经开发了一种以pMMO基因序列为基础的、定量检测甲烷氧化菌或其它相关菌结构和功能的基因芯片。该芯片含有59个探针,对已知的菌株和环境中的样品进行克隆试验表明,鉴定结果与克隆库中的序列完全一样。 使用DNA芯片进行高效检测,对基因定量分析是一个非常有用的工具。初期的研究工作主要是针对甲烷氧化菌整个基因组的表达,对产物进行分析表明,它是一个非常具有潜力的分子生物学检测工具。在上述59个可利用的基因探针基础上,在一个试验中能够检测几千个菌株的属、种或它们更高的进化分枝。 同样,在- 个试验中也可以区分出样品中所含致病的、有益的或被污染的细菌,因此对环境微生物的检测功能非常强大。使用成对的基因探针,能够反映靶微生物的生物进化,将有可能评估所有原核微生物。 常用的方法是以16S、23S为靶基因,或以功能性酶的基因序列为靶基因,进行酶或蛋白质的功能分析,该方法的优势在于能够检测环境中的样品。 目前,用尼龙、硝化纤维制作的基因芯片已被用于细菌诊断、食品污染与肠道球菌素的检测。例如,采用含凝胶基片(poly-acrylamide gel micropads)的生物芯片,可以检测芳香烃的降解:用包括高达3万个16S的芯片,可以进行环境微生物的鉴定。利用专性甲烷氧化菌制作的芯片,建立了一个包含700个pMMO和amoA的序列进化树。设计的180个基因探针已有68对被利用,它们代表了不同甲烷氧化菌及相关菌株的类、属和种。 ...
运动会上用的发令响炮,发令时会产生大量白烟。这是因为发令响炮中的药品受到撞击,氯酸钾迅速分解,产生的氧气与红磷反应生成五氧化二磷,形成白色粉末,进而形成大量白烟。 游泳池里的水是湛蓝色的,这是因为工作人员在其中加入了适量的硫酸铜,硫酸铜具有杀菌、消毒作用,以确保运动员的身体健康。 举重运动员在举重前将双手伸入盛有碳酸镁的盆中,然后摩擦手心。碳酸镁具有良好的吸水性,能增加器械与手掌间的摩擦,使运动员能够牢固握住杠铃。 体操运动员在做单杠运动前双手也涂抹白色粉末,但这种白色粉末是滑石粉,主要成分为硅酸镁。滑石粉具有滑腻感,能减少手心与单杠间的摩擦力,使运动员在做动作时更加灵活自如。 ...
铁(Ⅲ)与大多数阴离子以盐的形式存在,除了那些由于有还原剂特性的阴离子与铁(Ⅲ)不能相容。例如,可以从水溶液中得到粉红色到几乎白色的水合物Fe(ClO4)3·10H2O、Fe(NO3)3·9(或6)H2O和Fe2(SO4)3·10H2O。 水合化学 铁离子在水溶液中的一个显著特征是倾向于水解和(或)形成络合物。水解的平衡常数控制了水解的几个步骤: [Fe(H2O)6]3+=[Fe(H2O)5(OH)]2++H+,K=10(-3.05次方) [Fe(H2O)5(OH)]2+=[Fe(H2O)4(OH)2]++H+,K=10(-3.26次方) 2[Fe(H2O)6]3+=[Fe(H2O)4(OH)2Fe(H2O)4]4+2H+,K=10(-2.91次方) 根据这些平衡常数,即使在较酸性的条件下(pH2~3),水解程度也很大。为了使溶液中主要含有FeⅢ的淡紫色六水合离子(假定约99%),pH必须接近零。当pH提高到2~3以上时,会生成比双核络合物更高级的缩合物,平衡反应变得更慢,不久就会形成凝胶。最后,水合氧化铁以红棕色凝胶物沉淀下来。 双核络合物的离解动力学已经研究过,考虑了各种可能的途径,包括速率定律(包括与酸无关和有关的项)和其他因素。 没有证据表明存在确定的氢氧化物Fe(OH)3,通常被称为红棕色沉淀的氢氧化铁最好被称为水合氧化铁Fe2O3·nH2O的一部分。至少从外观上看,它是上面提到的FeO(OH)沉淀的一部分。 各种羟基物种,如[Fe(OH)(H2O)5]2+是黄色的,由于电荷转移带在紫外区,其尾部进入可见区。因此,铁盐的水溶液,即使是与非络合性阴离子(除强酸以外)结合的溶液也是黄色的。 水合氧化铁(Ⅲ)易溶于酸,稍微溶于强碱。当氢氧化锶或钡的浓溶液与高氯酸铁共沸时,会得到白色结晶粉末的六羟基合铁(Ⅲ)酸盐M3Ⅱ[Fe(OH)6]2。水合氧化铁(Ⅲ)与碱金属氢氧化物一起煮沸可以得到组成为MⅠFeO2的物质,MⅠFeO2也可以用熔融的Fe2O3与碱金属氢氧化物或碳酸盐以适当的化学计量比例作用而制得。可以推测中等浓度的[Fe(OH)6]3-离子能在强碱溶液中维持。 水溶液中的三价铁很容易被许多还原剂还原,例如上面提到的I-。三价铁也能氧化硫离子,因此在FeⅢ溶液中通入H2S或加入硫化物会沉淀出硫化铁,但很快会转变成硫化铁(Ⅱ)和胶体硫的混合物。向铁(Ⅱ)溶液中加入碳酸盐或碳酸氢盐会沉淀出水合氧化物。 ...
在分子轨道理论中,除了八面体型络合物外,还有四面体和正方形型络合物。四面体型络合物可以分为两类:一类是氧代物种,其中金属的表观氧化数较高(≥6),且存在广泛的π键。例如MnO4-,MnO42-,CrO42-和MoO42-等。另一类是金属离子处于较低氧化态(如+2或+3),与卤素离子、胺-N原子或RO-离子形成络合物。第二类络合物的轨道图形如图20-43所示。 对于正方形型络合物,其分子轨道图的一般形式如图20-44所示。 分子轨道途径已经广泛地应用于类似(h5-C5H5)2M和M(CO)6化合物的物质。 二维的光谱化学序列 如图20-42所示,eg和t2g轨道之间的能量分离程度不仅取决于σ键合时eg轨道能量的上升程度,还取决于π相互作用对t2g轨道的影响程度。因此,可以构想一个二维图,在一个轴上按配位体使eg轨道成反键的趋势排列(σ参数只能是正值),在另一个轴上按配位体移动t2g轨道的能力排列(向上或向下)(π参数可能为正也可能为负)。这个概念的第一个尝试是由McClure进行的,他将取代的八面体络合物(如反式CoA4B2)中吸收带的分裂情况表示为σA、σB、πA和πB的函数。已经有一些进一步的努力来发展这个方案,但为了得到足够准确的包括所有重要配位体的分裂数据,需要进行更广泛的低温偏振晶体光谱研究。McClure提出的一些配位体的定性二维光谱化学序列如图20-45所示。需要指出的是,CO的位置可能存在疑问,因为大量的证据表明M-CO键的性质中存在强烈的π相互作用(在图中为负值)。 即使是在定性的形式上,二维序列的概念在强调d轨道分裂的双重根源方面也是有价值的。 ...
乒乓球瘪了,用开水烫烫瘪的地方就会鼓起来。这是由于乒乓球里的空气热后体积膨胀,把原来瘪的地方顶起来,乒乓球就修复好了。气体不仅有受热膨胀的特性,而且遇冷还会收缩呢,这就是平常人们所说的热胀冷缩。 自然界中许许多多的物体都具有热胀冷缩的性质,物体的这种性质给人们的生活带来了许多方便,也带来了一些麻烦。比如,往自行车的车把上套塑料袋时,先用热水烫一下塑料套,再往车把上套,由于热膨胀,就比较容易地将塑料套套上。过一会儿,塑料套遇冷收缩,就能紧紧地套在车把上了。而烧开水时、水壶里的水如果灌得太满,水受热后体积膨胀,会从壶里溢出。因此就要想办法防止热胀冷缩造成的危害。比如:夏天架电线时要架得松一些,以防止冬天电线遇冷收缩时断了;冬天铺设铁轨时,铁轨间要留有一定的空隙,也是为了防止夏天铁轨受热,膨胀使衔接处凸起来,容易发生火车出轨事故;为了使桥梁有膨胀和收缩的余地,同样在桥梁上设置伸缩缝,以便不会发生翘曲;夏天不要把自行车内胎的气打得太足,防止空气受热膨胀,使内胎爆裂,也是同样的道理。 在我们的生活中,物体热胀冷缩的例子数不胜数,但并不是所有物体都是热胀冷缩的。比如夏天我们为了快速冰镇一下啤酒,可以将啤酒放在冰箱冷冻室中,但如果时间大长,啤酒瓶就会炸裂。这除了由于玻璃瓶冷缩外,还因啤酒中的水结冰后体积膨胀所造成。这与烧水时水受热膨胀的情况恰好相反,如何解释这种现象呢? 自然界中有少数物质的牌气很古怪,它们不是热胀冷缩,而是热缩冷胀,也叫反常膨胀。4℃以下的水就具有这种非同寻常的特性。水在4℃时的密度最大,体积最小。温度逐渐下降时,它的体积反而在逐渐增大,结成0℃的冰时,它的体积不是缩小而是胀大,比原来大约要増大十分之一。 由于4℃的水密度最大,所以在北方寒冷的冬天里,河的表面结了厚厚的一层冰,但在冰层的下面,水温总保持在4℃左右,这为水中生物提供了生存的良好环境。 水的这种反常膨胀的特性可以为人们所利用,如别具风味的冻豆腐,就是使豆腐中的水结冰后,体积膨胀把豆腐中原来的小孔撑大,当冰融化后,水从一个一个的小孔中流出来,豆腐里就留下了无数个小孔,整块豆腐呈泡沫塑料状,这样,冻豆腐经过烹调后,小孔里盛满了汤汁,吃起来味道就非常鲜美。 我国劳动人民很早就知道并利用了水的这种反常膨胀特性来开采石料。寒冷的冬季,往石间缝中注上水,等水冻成冰后,由于体积膨胀,把石头撑得四分五裂,这样开采起来就既省力又能提高效率。 但是水的反常膨胀有时也给人们的生活带来了一些麻烦。比如在冬天,室外的自来水管常会由于管中的水结冰,而被撑裂;汽车司机在冬天的晚上收车后,常常把水箱里的水放掉,也是防止水箱冻裂。因此,北方的冬季特别要做好保暖防冻措施。 ...
维生素E 维生素E是一组化学结构相似的酚类化合物的总称。它是苯并氢化吡喃衍生物,自然界存在的有十多种,其中以α-生育酚最强,分布最广而最具代表性。维生素E为浅黄色黏稠油状液体,具有抗氧化性质,能抵抗自由基的侵害。它还参与抗体形成,有助于防治冠心病、高血脂症,并用于治疗习惯性流产、不孕症、更年期障碍以及促进男性产生有活力的精子。维生素E存在于豆类、蔬菜、大豆油、芝麻油等食物中,每日的需要量为50毫克。 维生素E的化学性质稳定,能耐热、酸和碱,但在紫外光照射下会被破坏,因此宜存于棕色瓶中。 维生素K 维生素K是一大类甲萘醌衍生物的总称,主体结构为甲萘醌。维生素K1存在于植物苜蓿、菠菜等绿色植物中,维生素K2是微生物合成产生的。维生素K的功能是促使人体血液凝固,缺乏它会导致凝血时间延长,严重的流血不止而死亡。因此,维生素K广泛地应用于医学领域。 维生素K的化学性质稳定,能耐酸和热,但易被碱和紫外光照射所分解。 维生素K并非氯胺酮(K粉)的成分,氯胺酮是一种快速麻醉药,具有药物依赖性。K粉已被禁用作为毒品。 ...
在统计力学中,求系综平均值的关键在于求分布函数。不同的宏观条件会导致不同的分布函数。微正则系综是一群保守的、孤立的或近似孤立的相同系统的集合,是统计力学中的一个重要系综。微正则系综的分布函数与系统的能量、体积和粒子数有关。 根据等概率原理,一个给定能量、体积和粒子数,并且处于统计平衡的孤立系统中,每个可能的微观态出现的概率都相等。这个原理是统计理论中最基本的讨论条件之一,并且已经通过实验证实了其正确性。 微正则系综的基本宏观条件是系统具有恒定的粒子数N、体积V和能量E。在处理能量不变的条件时,可以将系统的能量变化范围处理为一个很小的范围△E,使得△E趋近于0。微正则系综的分布函数在能量范围内是常数,在能量范围外为零。 微正则系综的分布函数可以表示为ρs=1/Ω(E),其中Ω(E)表示能量范围内可能的微观状态数。分布函数的归一化条件为ρs=1/Ω(E)。 对于物理量u,在微正则系综中的统计平均值可以表示为: ...
在喹啉环体系中,8-羟基喹啉及其衍生物都是两性电解质,可溶于酸或碱溶液。这些化合物具有酸性酚型OH基团和碱性叔N-原子。它们可以与金属离子形成络合物,并在中性溶液中定量沉淀出多种金属离子。 8-羟基喹啉及其衍生物与Al +3 、Zn +2 和Mg +2 离子反应会产生黄色沉淀,这些沉淀在固体或有机液体中的溶液中会发出强烈的黄-绿色或蓝-白色荧光。然而,衍生物中的SO 3 H基团会影响沉淀的形成。8-羟基喹啉对于Al +3 离子没有沉淀能力,可能是由于CH 3 -基团的位阻效应。但是,活性基团可以与金属原子形成化学键合,并被吸附在金属的水不溶氧化物或氢氧化物表面上。 操作手续: 在表面皿上或滴试板的凹处,加入约0.2克氧化镁和一滴试液(水、酒精、乙醚等溶液)。将悬浮液放在石英灯下,根据活性试料的含量,会立即或在短时间内显示出淡黄色或蓝白色的荧光。如果怀疑8-羟基喹啉含量很小,最好用氧化镁和该溶剂进行空白试验。也可以用新配制的Mg(OH) 2 水悬浮液代替氧化镁。 鉴定限度: 8-羟基喹啉(Ⅰ):0.5微克(水和酒精溶液) 7-氯-8-羟基喹啉(Ⅱ):0.6微克(丙酮溶液) 5,7-二氯-8-羟基喹啉(Ⅲ):0.8微克(丙酮溶液) 5,7-二溴-8-羟基喹啉(Ⅳ):1微克(丙酮溶液) 8-羟基喹啉-5-磺酸(Ⅴ):0.5微克(水溶液) 8-羟基喹啉-7-磺酸(Ⅵ):0.5微克(水溶液) 7-碘-8-羟基喹啉-5-磺酸(Ⅶ):1微克(水溶液) 2-甲基-8-羟基喹啉(8-羟基喹哪啶)(Ⅷ):0.4微克(酒精溶液) 这个操作手续也适用于8-羟基喹啉及其衍生物的酸性水溶液,但需要使用更多的氧化镁作为中和剂产生Mg +2 离子。然后,这些离子与8-羟基喹啉或某些可产生内络合镁盐的衍生物反应,形成不溶解的荧光镁盐。否则,荧光是由于化学吸附作用产生的。 ...
在配制涤纶短纤维6号油剂时,需要使用以下配方: 成分 比例(%) 主要作用 烷基磷酸酯钾盐(PK)50%有效浓度 75 抗静电 脂肪酸聚乙二醇酯(PEG700) 25 集束,平滑 根据不同的纺纱工序,乳液浓度也有所不同: 前纺:0.5% 后纺:2% 涤纶短纤维6号油剂具有以下性能: 性能 涤纶短纤维6号油剂 备注 吸湿性(%) 10.9 温度65%,72小时 粘度(cP) 1.51 油浓2%,27℃ 表面张力(dyn/cm) 39.03 油浓0.25%,20℃ 润湿(S) 250 浓度0.25%涤卡白布 泡沫[初高(mm)] 230 浓度0.25% 泡沫[五分后高(mm)] 100 浓度0.25% 挥发减量(%) 14 180℃,2小时 含油率(%) 0.15 比电阻(Ω) 2.5×10 8 在包装和贮存涤纶短纤维6号油剂时,应使用铁桶(内衬塑料袋)或塑料桶。油剂单体应在较低温度下存放,温度高于30°C时,会导致pH值降低、酸价上升,从而影响溶解度。烷基磷酸酯钾盐在0~30℃存放一年以上不会影响使用性能。另外,由于磷酸酯钾盐对硬水的耐受性较差,配制油剂时水的硬度应在5度以下,否则会影响油剂的性能。 ...
元素的第一电离势是指脱去一个电子所需的能量。不同元素的第一电离势呈现出周期性的变化。惰性气体的第一电离势较高,因为它们的原子结构稳定。碱金属元素的第一电离势较低,因为它们的s电子轨道较大,离核较远。 在周期表中,元素的电离势变化不是完全平坦的,而是有小的起伏。这是因为当一个亚层的电子填满后,发展到下一个亚层的第一个电子的电离势会较小。例如,np 2 之后的np 1 电子的电离势较小。B、Al、Ga、In等元素的第一电离势就呈现出这种情况。同样地,np 3 是半满状态,也较稳定,所以再加一个电子会不稳定,电离势较小。O、S、Se等元素也是如此。 元素的原子价 元素的原子价也呈现出周期性的变化。虽然有些元素只有一种原子价,如惰性气体、碱金属和碱土金属,但大多数元素表现出多种原子价。过渡元素和许多非金属元素都具有多种原子价。图28-4展示了元素的正原子价。位于峰顶的元素除了VA族外,其他都被VIIA、VIIB或VIII族占据。元素的最高原子价通常出现在氧化物或氟化物中,而最低原子价则出现在其他卤化物和配合物中。 关于负价,硫、硒、碲在硫化物、硒化物、碲化物中以负二价离子的形式存在,也在溶液中如此。但是氧只能在氧化物的晶格中以负二价离子存在,在溶液中不能存在。碳在CO和CH的化合物中以极性共价形式存在,没有C 2- 或C 4- 离子。锰的所谓正七价实际上在MnO和KMnO中,锰原子也以极性共价形式存在。类似地,在RuO和OsF分子中,所谓的正八价情况也是如此。 ...
当两个原子共享电子对时,就构成了共价键的类型。共价键以“点一叉”表示,每个原子都为成键各提供一个电子,但不是电子完全转移,而是两个原子共享这个电子对。这种方式不需要消耗从一个原子将电子完全转移到另一原子上所需要的能量,而是使两个原子都达到了稳定的结构。 举例来说,我们来表示下列化合物的电子排列:(a)H2O;(b)CO2;(c)HCl。 方法:这些化合物都是由共价键组成,因此成键的电子是共享的。我们可以画出共享的电子和键的数目,以达到填满每个原子的价电子层的目的。为了弄清电子的来源,我们用X表示从一个原子来的电子,用表示从另一个原子来的电子。 解答:(a)H2O有两个共价单键 评注:注意每一个原子如何获得共享电子,从而形成八个电子(八角)或两个电子(如氢的情况)的稳定结构。在这些化合物中,每一个共价键都有一定程度的极化。 实验证明来自不同原子的电子对是共享的,其中最显著的证据是X射线。X射线的基本原理将在下一章中讨论,现在只需要看一张图。图2-6表示用X射线研究苯的结构所得到的结果,暗影的密度表示电子的密度。从这个分子的六边形图像中可以明显看出(与图2-2对比),六个碳原子周围显示出高电子密度的区域。但对于我们目前的讨论来说,更重要的是碳原子之间也存在着高电子密度的区域。等值线表示电子很可能在那里出现,原子共享电子对的附近电子密度大,这正是我们所期望的。 苯具有许多电子和一些特殊性质,但现在我们暂且不讨论这些,而是先来看最简单的分子——氢分子H2,它只含有两个电子。氢分子的电子密度如图2-7所示。正如在苯分子中一样,这个图也显示出两个原子核之间存在一个电子富集的区域,因此简单的HH共价键的图像再次得到了证实。但在这种情况下,我们可以开始看到分子为什么是稳定的。由于电子对处于两个带正电荷的原子核之间,它们吸引这两个核,起到了一种“静电胶粘剂”的作用。这就是共价键具有强度的基本原因:当电子对处于原子核之间并被它们共享时,它们吸引这两个原子核,并使它们连结在一起。 两个原子之间的键有几种表示方法。最详细的绘制方法,如图2-7所示,包括绘制电子密度。对于大多数应用来说,这太过于详细,因此通常只需要表示出电子密度分布的一般形状即可,如图2-8所示。腊肠状轮廓(称为分子轨道)表示电子对最可能出现的区域(不要以为这根线是明显的边界)。即使化学键的这种表示方法对于大多数目的来说也太过繁琐,因此通常用直线来表示一个电子对的存在。用这种最简单的表示方法时,氢分子可以写成H-H,但要经常记住,两个原子之间的短线只是简单的标记,要说明一个键的强度,还必须像图2-7那样表示出电子分布的详细情况。 相关文章 共价键的类型https://www.999gou.cn/article.php?id=690 配位共价键是什么https://www.999gou.cn/article.php?id=333 离子键和共价键的提出和几种其他类型的微粒间的相互作用https://www.999gou.cn/article.php?id=2946 化学键中的共价键https://www.999gou.cn/article.php?id=1650 共价键的形成与价键理论要点https://www.999gou.cn/article.php?id=688 不同原子间的共价键有哪些https://www.999gou.cn/article.php?id=330 ...
铬黑T(又名埃罗黑T,简称EBT)是一种偶氮萘染料,化学名称是(1-羟基-2-萘偶氮)-6-硝基-2-萘酚-4磺酸钠。它是一种黑褐色粉末,带有金属光泽。铬黑T溶于水后,碱酸基上的Na+全部电离,以阴离子的形式存在于水溶液中。它是一种二元弱酸,可电离出二个H+。铬黑T与金属离子给合后的络合物呈红色,只有在pH=7~11范围内,指示剂才有明显的颜色变化。实验证明,使用铬黑T最适宜的酸度是pH=9~10.5。 铬黑T常用于测定Mg2+、Zn2+、Pb2+、Mn2+、Cd2+、Hg2+等离子的指示剂。然而,Al3+、Fe3+、Co2+、Ni2+、Cu2+等离子对铬黑T有封闭作用。为了消除这些离子对滴定的干扰,可以使用三乙醇胺来掩蔽Al3+和Fe3+,用KCN来掩蔽Cu2+、Co2+、Ni2+。 固体状态的铬黑T相当稳定,而水溶液不稳定,仅能保存几天。这是由于发生聚合作用使铬黑T形成聚合物呈棕色。聚合后的铬黑T不能与金属离子显色,在pH<6.5的溶液中聚合更为严重。 铬黑T的配制方法有两种:一种是将铬黑T与干燥的NaCl以1:100的比例混合磨细后保存在干燥器中;另一种是将铬黑T0.1克溶于15毫升三乙醇胺中,溶解完后加入5毫升无水乙醇。这种溶液可保存数月不变质。 ...
 
个人资料
  • 深渊晓旋
  • 职业经历
  • 教育经历
  • 个人简介
  • 影响力 0被赞0收藏0关注
已连续签到天,累积获取个能量值
  • 第1天
  • 第2天
  • 第3天
  • 第4天
  • 第5天
  • 第6天
  • 第7天
再签到3天,将额外获得3个能量值
去签到